<u>PROBLEM</u>

Discuss the monotonocity of Q(x), where

$$Q(x) = 2f\left(\frac{x^2}{2}\right) + f(6 - x^2) \quad \forall x \in \mathbb{R}$$

It is given that $f''(x) > 0 \forall x \in R$. Find also the points of maxima and minima of Q(x).

SOLUTION

Given $Q(x) = 2f\left(\frac{x^2}{2}\right) + f(6 - x^2)$ $\therefore Q'(x) = 2xf'\left(\frac{x^2}{2}\right) - 2xf'(6 - x^2)$ $= 2x\left\{f'\left(\frac{x^2}{2}\right) - f'(6 - x^2)\right\}$

But given that f''(x) > 0. Thus, f'(x) is increasing for all $x \in R$.

Case I: Let
$$\frac{x^2}{2} > (6 - x^2)$$
 or $x^2 > 4$
 $\therefore x \in (-\infty, -2) \cup (2, \infty)$
or $f\left(\frac{x^2}{2}\right) > f(6 - x^2)$
or $f\left(\frac{x^2}{2}\right) - f(6 - x^2) > 0$
If $x > 0$, then $Q'(x) > 0$ or $x \in (2, \infty)$.

If x > 0, then Q'(x) < 0 or $x \in (-\infty, -2)$.

Case II: Let $\frac{x^2}{2} < (6 - x^2)$ or $x^2 < 4$ or $x \in (-2, 2)$ or $f' = \left(\frac{x^2}{2}\right) < f'(6 - x^2)$ or $f'\left(\frac{x^2}{2}\right) - f'(6 - x^2) < 0$

If x > 0, then Q'(x) < 0 or $x \in (0, 2)$. If x < 0, then Q'(x) > 0 or $x \in (-2, 0)$. Combining both cases, Q(x) is increasing in $x \in (-2, 0)$ $\cup (2, \infty)$, and Q(x) is decreasing in $x \in (-\infty, -2)$ $\cup (0, 2)$.